

Fundamental Algorithms

Chapter 8: Graphs

Jan Křetínský

Winter 2017/18

Graphs

Definition (Graph)

A graph G = (V, E) consists of a set V of vertices (nodes) and a set E of edges between the vertices.

- undirected graph: $(i,j) \in E$ an unordered pair -(i,j) = (j,i)
- directed graph (or shorter: "digraph"): $(i,j) \in E$ an ordered tuple, i.e. $(i,j) \in E$ independent of $(j,i) \in E$

Graphs

Definition (Graph)

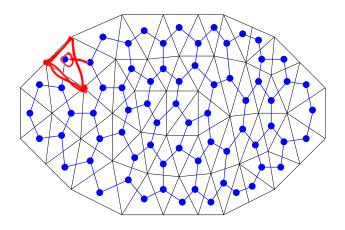
A graph G = (V, E) consists of a set V of vertices (nodes) and a set E of edges between the vertices.

- undirected graph: $(i,j) \in E$ an unordered pair -(i,j) = (j,i)
- directed graph (or shorter: "digraph"): $(i,j) \in E$ an ordered tuple, i.e. $(i,j) \in E$ independent of $(j,i) \in E$

Some Terms

- two vertices V_0 and V_n are connected by a path (of length n), if there is a sequence of edges $(V_0, V_1), (V_1, V_2), \dots, (V_{n-1}, V_n)$
- a graph is connected, if there is a path between any two vertices
- a vertex V has degree d, if V has d (outgoing) edges

Graphs in CSE – Unstructured Grids:



- in blue: V = grid cells, E = neighbours ("dual graph")
- in black: V = grid vertices, E = cell edges

Definition (Tree)

A tree is a connected graph without cycles.

Definition (Tree)

A tree is a connected graph without cycles.

→ Question: is this consistent with our "naive" image of a tree?

Definition (Tree)

A tree is a connected graph without cycles.

→ Question: is this consistent with our "naive" image of a tree?

Theorem

A graph T is a tree, if and only if there is a unique path between any two distinct vertices of T.

Definition (Tree)

A tree is a connected graph without cycles.

→ Question: is this consistent with our "naive" image of a tree?

Theorem

A graph T is a tree, if and only if there is a unique path between any two distinct vertices of T.

Implications:

- there is only one connection from the root to any of the nodes
- any path between two nodes will run through the root of the resp. subtree
- actually: which node is the "root"?

Trees (2)

Theorem

A connected graph (V, E) is a tree, if and only if |E| = |V| - 1

Trees (2)

Theorem

A connected graph (V, E) is a tree, if and only if |E| = |V| - 1

Implications:

- if you "cut" one edge, a tree is no longer connected (child becomes an orphan)
- building a tree incrementally requires a root (one node, no edge) and one additional edge per added node

Trees (2)

Theorem

A connected graph (V, E) is a tree, if and only if |E| = |V| - 1

Implications:

- if you "cut" one edge, a tree is no longer connected (child becomes an orphan)
- building a tree incrementally requires a root (one node, no edge) and one additional edge per added node

Definition (Spanning Tree)

T = (V, E) is called a **spanning tree** for the graph G = (V, E'), if T is a tree, and $E \subset E'$.

Note: T has the same vertices as G.

Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

```
Node := (
   key: Integer,
   edges: List of Node );
}
```

Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

```
Node := (
   key: Integer,
   edges: List of Node );
}
```

Adjacency Matrix:

- $n \times n$ matrix A, where n = |V|
- $a_{ij} = 1$, if $(i, j) \in E$
- A is symmetric for undirected graphs

Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

```
Node := (
   key: Integer,
   edges: List of Node );
}
```

Adjacency Matrix:

- $n \times n$ matrix A, where n = |V|
- $a_{ij} = 1$, if $(i, j) \in E$
- A is symmetric for undirected graphs

Note: to store an adjacency matrix as an $n \times n$ array is a good idea, only if $|E| \in \Theta(n^2)$

Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph (V, E), and a

node $x \in V$.

Task: Starting from x, "visit" all vertices in V (following edges only)

Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph (V, E), and a node $x \in V$.

Task: Starting from x, "visit" all vertices in V (following edges only)

Examples:

- modify the key values of all vertices
- search a specific key value in a graph

Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph (V, E), and a node $x \in V$.

Task: Starting from x, "visit" all vertices in V (following edges only)

Examples:

- modify the key values of all vertices
- search a specific key value in a graph

Two main variants:

- depth-first traversal (depth-first search)
- breadth-first traversal (breadth-first search)

Depth-First Traversal

```
DFTraversal(V:Node) {
     mark current node V as visited:
   Mark[V.key] = 1;
   ! perform desired work on V:
   Visit(V):
     perform traversal from all nodes connected to V
   forall (V,W) in V edges do
      if Mark [W. key] = 0 then DFT raversal (W);
   end do:
Assumptions:
 • keys V.key numbered from 1, \ldots, n = |V|
```

- Mark : Array[1..n]
- forall loop executed sequentially

DF-Traversal – Stack-Based Implementation

```
StackDFTrav(X:Node) {
     uses stack of "active" nodes
   Stack active = { X }; Mark[X.key] = 1;
   while active \langle \cdot \rangle {} do
        remove first node from stack
      V = pop(active);
       Visit(V):
      forail (V.W) in V.edges do
          if Mark [W] = 0 then {
            push(active, W); Mark[W.key] = 1;
      end do:
   end while:
```

→ use stack as last-in-first-out (LIFO) data container

Breadth-First-Traversal

Queue-Based Implementation

```
BFTraversal(X:Node) {
     uses queue of "active" nodes
  Queue active = \{X\}; Mark[X.key] = 1;
   while active \Leftrightarrow {} do
      ! remove first node from queue
      V = remove(active);
      Visit(V);
      forall (V,W) in V.edges do
          if Mark[W.key] = 0 then {
             append (active, W); Mark [W. key] = 1;
      end do:
   end while:
```

→ use queue as first-in-first-out (FIFO) data container

Breadth-First Search

```
BFSearch(x:Node, k:Integer) : Node {
   Queue active = { x }:
   while active \Leftrightarrow {} do
      V = remove(active);
      if V.key = k then return V;
      if Mark[V.key] = 0 then
         Mark[V.kev] = 1
          forall (V,W) in V.edges do
             append(active, W);
         end do:
      end if:
   end while:
```


Breadth-First Search

```
BFSearch(x:Node, k:Integer) : Node {
   Queue active = \{x\};
   while active \Leftrightarrow {} do
      V = remove(active);
      if V.key = k then return V;
      if Mark[V.key] = 0 then
         Mark[V.kev] = 1
          forall (V,W) in V.edges do
             append(active, W);
         end do:
      end if;
   end while:
```

Breadth-First Search as Shortest-Path Algorithm:

 breadth-first search will return the node with the shortest path from x

J. Kretinsky: Fundamental Algorithms

Chapter 8: Graphs Willer 2010/18

Chapter 8: Graphs Willer 2010/18

Breadth-First and Depth-First Traversal

DF/BF-Traversal and Connectivity of Graphs:

- DF- and BF-traversal will visit all nodes of a connected graph
- if a non-connected graph is traversed, both algorithms can be used to find the (maximum) connected sub-graph that contains the start node
- hence, DF- and BF-traversal can be extended to find all connectivity components of a graph

Breadth-First and Depth-First Traversal

DF/BF-Traversal and Connectivity of Graphs:

- DF- and BF-traversal will visit all nodes of a connected graph
- if a non-connected graph is traversed, both algorithms can be used to find the (maximum) connected sub-graph that contains the start node
- hence, DF- and BF-traversal can be extended to find all connectivity components of a graph

DF/BF-Traversal and Trees:

- DF- and BF-traversal will compute a spanning tree of a connected graph
- BF-traversal generates a spanning tree with shortest paths to the root